基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多光谱图像分类方面,由于普通的SVM方法没有考虑多光谱图像具有高维度和冗余的特点,因此难以实现令人满意的分类精度.本文提出了一种基于SVM和主成分分析相结合的多光谱的图像分类方法.并用5幅6波段两类地形的多光谱图像进行实验.实验结果表明,这种分类方法与普通的SVM方法相比提高了多光谱图像的分类精度.
推荐文章
一种基于主成分分析的高光谱图像波段选择算法
主成分分析
波段选择
高光谱图像
贝叶斯分类
基于主成分分析的最小二乘支持向量机岩性识别方法
测井解释
岩性识别
主成分分析
最小二乘支持向量机
累积方差
基于主成分分析和支持向量机的参数费用模型
主成分分析
支持向量机
参数费用模型
神经网络
基于主成分分析和支持向量机的飞参阶段划分研究
飞参
主成分分析
支持向量机
阶段划分
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于支持向量机和主成分分析的多光谱图像的分类方法
来源期刊 天津理工大学学报 学科 工学
关键词 多光谱图像 支持向量机 主成分分析
年,卷(期) 2008,(6) 所属期刊栏目
研究方向 页码范围 55-57,61
页数 4页 分类号 TU352.110.4
字数 2582字 语种 中文
DOI 10.3969/j.issn.1673-095X.2008.06.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王怀彬 天津理工大学计算机科学与技术学院 41 139 7.0 10.0
2 马京华 天津理工大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (115)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(4)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多光谱图像
支持向量机
主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导