作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高预测民航客运量的能力,考虑到民航客运量与其影响因素之间存在关联, 并利用训练样本与测试样本间的马氏距离对惩罚因子进行加权,改进传统的ε支持向量回归机(SVR),构造了基于进化ε-SVR的"影响因素-民航客运量"预测模型.在选择适当的参数和核函数的基础上,对中国民航客运量进行仿真实验,与标准的ε-SVR方法、BP人工神经网络和线性回归方法进行了对比,发现该方法能获得较小的训练相对误差和测试相对误差.
推荐文章
基于多元回归模型的航空运输客运量预测
民航客运量
需求预测
多元回归
灰色综合关联分析
影响因素
灰色系统模型在水路客运量预测中的应用
灰色系统
残差修正
水路客运量
支持向量回归机在铁路客运量时间序列预测中的应用
铁路客运量
ε支持向量回归机
人工神经网络
时间序列预测
基于多无线性回归模型的澜沧江-湄公河客运量预测
澜沧江
水路客运量
多元线性回归预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于判别分析-SVR的民航客运量预测模型研究及应用
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 民航客运量 支持向量回归机 预测
年,卷(期) 2008,(3) 所属期刊栏目 研究论文
研究方向 页码范围 527-531
页数 5页 分类号 F272|TP391
字数 4500字 语种 中文
DOI 10.3969/j.issn.0490-6756.2008.03.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (29)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (21)
二级引证文献  (19)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(5)
  • 引证文献(3)
  • 二级引证文献(2)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
民航客运量
支持向量回归机
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导