基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将奇异值分解同自然正交分解相结合,提出一种改进的正交奇异值分解方法.通过对原始数据进行自然正交分解,削弱原始数据之间的相关性,增强其用于分析及预测的能力,并得到相互正交的主成分代替原始数据进行奇异值分解,分析两个变量场之间的相关关系.在此基础上建立神经网络预测模型,实现多元时间序列的预测.采用该方法对三门峡处径流量同太平洋海温的耦合关系进行分析,并同常规奇异值分解方法进行比较,仿真结果验证了所提方法的有效性.
推荐文章
两阶段的多元时间序列异常检测算法
多元时间序列
有界坐标系统
基于距离的异常检测
基于多元时间序列的PM2.5预测方法
PM2.5
多元时间序列
预测
多元时间序列模式异常研究
多元时间序列
主元分析
κ-近邻
模式异常检测
基于参数重要度的多元时间序列相似性查询
多元时间序列
相似性查询
参数重要度
特征提取
相似性度量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EOF-SVD模型的多元时间序列相关性研究及预测
来源期刊 系统仿真学报 学科 工学
关键词 奇异值分解 自然正交分解 相关性提取 时间序列预测预测
年,卷(期) 2008,(7) 所属期刊栏目 仿真建模与仿真算法及数值仿真
研究方向 页码范围 1669-1672,1676
页数 5页 分类号 TP183
字数 4076字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 HAN Min 大连理工大学电子与信息工程学院自动化系 1 10 1.0 1.0
2 李德才 大连理工大学电子与信息工程学院自动化系 4 11 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (169)
参考文献  (10)
节点文献
引证文献  (10)
同被引文献  (38)
二级引证文献  (68)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(12)
  • 参考文献(5)
  • 二级参考文献(7)
2005(4)
  • 参考文献(3)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(3)
  • 引证文献(3)
  • 二级引证文献(0)
2011(2)
  • 引证文献(0)
  • 二级引证文献(2)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(7)
  • 引证文献(2)
  • 二级引证文献(5)
2015(10)
  • 引证文献(2)
  • 二级引证文献(8)
2016(10)
  • 引证文献(0)
  • 二级引证文献(10)
2017(17)
  • 引证文献(1)
  • 二级引证文献(16)
2018(13)
  • 引证文献(0)
  • 二级引证文献(13)
2019(8)
  • 引证文献(0)
  • 二级引证文献(8)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
奇异值分解
自然正交分解
相关性提取
时间序列预测预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统仿真学报
月刊
1004-731X
11-3092/V
大16开
北京市海淀区永定路50号院
82-9
1989
chi
出版文献量(篇)
14694
总下载数(次)
35
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家重点基础研究发展计划(973计划)
英文译名:National Basic Research Program of China
官方网址:http://www.973.gov.cn/
项目类型:
学科类型:农业
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导