基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对密闭鼓风炉过程机理的复杂性及过程信息的不确定性,研究了基于粗糙集(RS)与神经网络相结合的故障诊断方法.采用自组织映射神经网络(SOM)和条件属性依赖度相结合的方法,对连续的样本数据进行离散化,应用基于专家经验与条件属性依赖度相结合的属性重要度计算方法进行启发式RS约简,并把约简结果作为BP神经网络的输入.实验结果表明,采用该方法不仅优化了神经网络的拓扑结构,降低了神经网络的训练时间,同时大大提高了学习速度和故障诊断的准确率.
推荐文章
基于邻域粗糙集和并行神经网络的故障诊断
故障诊断
邻域粗糙集
神经网络
并行网络结构
基于粗糙集和神经网络的柴油机故障诊断
粗糙集
ROSETTA
小波包降噪
RBF人工神经网络
基于粗糙集和神经网络的柱塞泵故障诊断
粗糙集
人工神经网络
轴向柱塞泵
故障诊断
粗糙集CMAC神经网络故障诊断策略
粗糙集
神经网络
故障诊断
变压器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗糙集和神经网络的密闭鼓风炉故障诊断
来源期刊 控制工程 学科 工学
关键词 密闭鼓风炉 故障诊断 粗糙集 神经网络 启发式约简
年,卷(期) 2008,(4) 所属期刊栏目 故障诊断
研究方向 页码范围 461-465
页数 5页 分类号 TP273
字数 6348字 语种 中文
DOI 10.3969/j.issn.1671-7848.2008.04.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱红求 中南大学信息科学与工程学院 75 380 10.0 16.0
2 阳春华 中南大学信息科学与工程学院 389 3229 27.0 37.0
3 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
4 谷丽姗 中南大学信息科学与工程学院 3 96 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (244)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (15)
二级引证文献  (8)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
密闭鼓风炉
故障诊断
粗糙集
神经网络
启发式约简
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导