基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点.以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。
推荐文章
改进的蚂蚁聚类算法
蚂蚁算法
聚类
对称点距离
相似性函数
对层次聚类算法的改进
层次聚类算法
预排序
类间距离
改进支持向量聚类算法的研究
支持向量
聚类
核算法
二次规划
一种改进的 DBscan聚类算法
DBscan
核心点
二次聚类
轮廓系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 各种聚类算法及改进算法的研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 数据挖掘 聚类算法 聚类分析
年,卷(期) dnzsyjsxsb_2008,(9) 所属期刊栏目
研究方向 页码范围 1539-1541
页数 3页 分类号 TP311
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李明东 西华师范大学计算机学院 171 656 11.0 18.0
2 王安志 西华师范大学计算机学院 7 48 3.0 6.0
3 李超 西华师范大学计算机学院 9 94 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
聚类算法
聚类分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导