基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
异常检测旨在检测出不符合期望行为的数据,因而适合应用于故障诊断、入侵和欺诈检测以及数据预处理等多个领域.针对目前众多的专用和通用异常检测方法,本文侧重对基于统计的主流异常检测方法进行了回顾,力图提供一个新的结构化的异常检测方法的认识框架,并依据其监督和无监督学习算法的原理进行了简单分类,特别对部分异常检测方法间的等价性进行了深入探讨.
推荐文章
基于进程行为的异常检测研究综述
进程行为
异常检测
入侵检测
入侵异常检测研究综述
异常检测
入侵
网络数据
系统调用
系统调用参数
海量信息异常检测问题的异常概率排序算法
数据挖掘
异常检测
均匀分割
异常概率排序
入侵检测研究综述
入侵检测
网络安全
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 异常检测综述
来源期刊 山东大学学报(工学版) 学科 工学
关键词 异常检测 统计 监督学习 无监督学习
年,卷(期) 2009,(6) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 13-23
页数 11页 分类号 TP181
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (71)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(2)
  • 参考文献(1)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(2)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(7)
  • 参考文献(2)
  • 二级参考文献(5)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(7)
  • 参考文献(2)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(7)
  • 参考文献(2)
  • 二级参考文献(5)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常检测
统计
监督学习
无监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导