基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
稀有类分类在许多领域有重要应用,针对稀有类在数据中所占比例少,容易被忽略的特点,提出一种基于聚类和Ripper的稀有类分类方法,该方法在一趟聚类的结果中,通过将在整个数据集中所占的比例低于15%的聚类标识为少数类,再应用Ripper分类算法分别对少数类和多数类分别进行分类建模,并按照一定的组合方式调整得出整个数据集的最终规则集.在UCI数据集上的测试结果表明,基于一趟聚类和Ripper的稀有类分类方法对稀有类可产生高质量的分类效果.可以将该方法应用于现实生活的领域中进行稀有数据的分类.
推荐文章
利用集成分类器进行稀有类分类
集成分类器
数据库
非平衡类数据
召回率
应用分类方法进行聚类评价
聚类评价
分类
信息增益
基于仿射聚类的主动SVM多类分类方法
仿射传播聚类
多分类支持向量机
主动学习算法
训练样本点优化
基于聚类选择的分类器集成
分类器集成
聚类
分类器选择
差异性
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类和Ripper的稀有类分类方法
来源期刊 暨南大学学报(自然科学与医学版) 学科 工学
关键词 数据挖掘 稀有类分类 一趟聚类
年,卷(期) 2009,(1) 所属期刊栏目 计算机协同技术
研究方向 页码范围 40-44
页数 5页 分类号 TP311.12
字数 3474字 语种 中文
DOI 10.3969/j.issn.1000-9965.2009.01.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋盛益 广东外语外贸大学信息学院 92 1053 18.0 28.0
2 余雯 广东外语外贸大学信息学院 4 62 3.0 4.0
3 黄兴全 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (11)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据挖掘
稀有类分类
一趟聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
暨南大学学报(自然科学与医学版)
双月刊
1000-9965
44-1282/N
16开
广州市石牌暨南大学
1936
chi
出版文献量(篇)
3168
总下载数(次)
6
总被引数(次)
18800
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导