原文服务方: 微电子学与计算机       
摘要:
越来越多的研究表明,借助量子计算技术可以提高有监督分类算法和无监督聚类算法的计算效率,甚至是学习精度.通常采用的方法有:基于量子理论将经典信息转换为量子态的形式存储起来,用量子态来表示所有样本;以量子态之间的距离替代样本数据之间的经典距离,形成新的相似度来度量样本数据间的相似性等.通过理论和模拟验证表明,量子计算可以实现对经典机器学习算法的加速.最后,总结了量子机器学习技术的优势和目前所存在的问题,并展望了未来该领域的发展趋势.
推荐文章
基于量子遗传算法的XML聚类集成
XML文档
KNN分类
量子遗传算法
聚类集成
聚类质量
基于量子行为的微粒群优化算法的数据聚类
聚类
基于量子行为的微粒群优化算法
新的度量
基于量子遗传聚类的入侵检测方法
入侵检测
聚类
量子遗传算法
组合优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子计算的分类和聚类算法综述
来源期刊 微电子学与计算机 学科
关键词 量子计算 机器学习 分类 聚类
年,卷(期) 2020,(8) 所属期刊栏目
研究方向 页码范围 1-5
页数 5页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 牛伟纳 四川大学网络空间安全学院 2 0 0.0 0.0
2 赵超 河北工程大学信息与电气工程学院 2 18 1.0 2.0
3 杨俊闯 河北工程大学信息与电气工程学院 2 18 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (176)
共引文献  (56)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(10)
  • 参考文献(0)
  • 二级参考文献(10)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(14)
  • 参考文献(1)
  • 二级参考文献(13)
2014(24)
  • 参考文献(2)
  • 二级参考文献(22)
2015(25)
  • 参考文献(4)
  • 二级参考文献(21)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
量子计算
机器学习
分类
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导