基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
给出了考虑软时间窗的物流配送车辆路径选择(VRP)模型,提出了一种改进的蚁群算法来求VRP模型的近似最优解.为了以最少的计算时间得出VRP问题的近似最优解,首先用贪婪算法产生初始蚁群,然后通过蚁群算法的评价、信息素释放、蚂蚁移动、信息素消散、判断收敛的循环过程对初始解进行优化.实践表明,在求解软时间窗物流配送车辆路径选择问题方面,改进蚁群算法具有更好的收敛性.该算法算法是求解VRP问题的较好方案.
推荐文章
基于改进蚁群算法的车辆路径优化问题研究
蚁群算法
车辆路径优化
信息素
物流
求解车辆路径问题的改进蚁群算法
车辆路径问题
蚁群算法
遗传算法
变异算子
优化问题
收敛
基于蚁群算法的路径规划改进方法研究
蚁群算法
路径规划
改进方法
基于组件式蚁群算法的车辆路径问题研究
车辆路径问题
组件式蚁群算法
组件软件框架
可重用性
可扩展性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的车辆路径选择研究
来源期刊 佛山科学技术学院学报(自然科学版) 学科 经济
关键词 物流 车辆路径选择 VRP模型 改进蚁群算法
年,卷(期) 2009,(5) 所属期刊栏目 机电与自动化
研究方向 页码范围 9-13
页数 5页 分类号 F253.9
字数 3448字 语种 中文
DOI 10.3969/j.issn.1008-0171.2009.05.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李铁柱 东南大学交通学院 55 843 18.0 27.0
2 王希伟 东南大学交通学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
物流
车辆路径选择
VRP模型
改进蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佛山科学技术学院学报(自然科学版)
双月刊
1008-0171
44-1438/N
大16开
广东省佛山市江湾一路18号
1988
chi
出版文献量(篇)
2495
总下载数(次)
2
总被引数(次)
7770
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导