基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
垃圾邮件过滤就是对邮件做出是垃圾或非垃圾的判断.传统的表示邮件的方法是在向量空间模型基础上通过信息增益等特征选择方法提取一部分词来表示邮件内容,存在语义信息不足的问题.该文提出一种将传统方法和词共现模型结合起来表示邮件特征的新方法,再采用交叉覆盖算法对邮件进行分类得到邮件分类器.实验表明,该文提出的邮件过滤算法与传统方法相比提高了过滤性能,词共现选择的维度要比传统方法选择的维度更具有代表性.
推荐文章
基于KNN-SVM的垃圾邮件过滤模型
垃圾邮件
模式识别提取
K近邻算法
特征提取
基于源地址约束的垃圾邮件过滤模型
垃圾邮件
源地址
约束
过滤
基于最大熵模型的垃圾邮件过滤技术
垃圾邮件
最大熵
特征值
邮件过滤
垃圾邮件过滤技术研究综述
垃圾邮件
贝叶斯过滤
人工免疫
发送方策略框架
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于词共现模型的垃圾邮件过滤方法研究
来源期刊 中文信息学报 学科 工学
关键词 计算机应用 中文信息处理 向量空间模型 垃圾邮件过滤 词共现模型 交叉覆盖算法
年,卷(期) 2009,(6) 所属期刊栏目
研究方向 页码范围 61-66,71
页数 7页 分类号 TP391
字数 6150字 语种 中文
DOI 10.3969/j.issn.1003-0077.2009.06.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张燕平 安徽大学计算智能与信号处理重点实验室 148 1556 21.0 32.0
2 谢飞 19 217 8.0 14.0
3 徐庆鹏 安徽大学计算智能与信号处理重点实验室 6 18 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (374)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (7)
二级引证文献  (19)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
计算机应用
中文信息处理
向量空间模型
垃圾邮件过滤
词共现模型
交叉覆盖算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导