提出了一种分类算法--基于组织进化和信息熵的数据驱动分类算法(a data-driven classification algorithm based on organizational evolution and entropy,DDCAOEE),与已有进化算法的运行机制不同,它的进化操作直接作用于数据而不是规则,进化结束后再从各组织中提取规则,这样有利于避免在进化过程中产生无意义的规则.根据分类问题的特点,设计了信息系统的组织,提出了3种进化算子和一种组织选择机制,给出了基于信息熵的属性重要度的进化方式,并基于此定义了组织适应度函数,最后,将算法用于6个试验数据集,并与现有的2个分类方法(Ant-Miner和CN2)进行了比较,实验结果表明,该方法获得了更高的预测准确率,产生了更小的规则集.