基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
核典型相关分析(KCCA)是一种有监督的机器学习方法,可以有效地提取非线性特征.然而随着训练样本数目的增加,标准的KCCA方法的计算复杂度会随之增加.针对此缺点,提出一种改进的KCCA方法:首先用几何特征选择方法选择一个训练样本子集并将其映射到再生核希尔伯特空间(RKHS),然后设计了一种提升特征提取效率的算法,该算法按照对特征分类贡献的大小巧妙地选取样本的特征值,进而求出其相应的特征向量,最后将改进的KCCA与支持向量数据描述(SVDD)多分类器相结合用于分类识别.在ORL人脸图像数据库上的实验结果表明,改进的方法相对传统的KCCA方法,在不影响识别率的情况下提高了人脸识别速度,减小了系统存储量.
推荐文章
模式识别中的特征提取研究
模式识别
特征提取
主成分分析
掌纹识别的一种新的特征提取方法
掌纹识别
主成分分析
线性判别分析
保局投影
监督保局投影
直接监督保局投影
一种新的电能质量扰动特征提取与识别方法
电能质量
数学统计
特征提取
PSO-SVM
一种新的掌纹特征提取方法研究
掌纹特征提取
Gabor小波
改进的广义K-L变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的特征提取方法及其在模式识别中的应用
来源期刊 计算机应用 学科 工学
关键词 人脸识别 核典型相关分析 特征向量选择 支持向量数据描述
年,卷(期) 2009,(4) 所属期刊栏目 人工智能
研究方向 页码范围 1032-1035
页数 4页 分类号 TP391.42
字数 4968字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹洁 兰州理工大学计算机与通信学院 180 1035 14.0 20.0
2 刘宗礼 兰州理工大学计算机与通信学院 5 21 3.0 4.0
3 郝元宏 兰州理工大学计算机与通信学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (68)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (17)
二级引证文献  (12)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1938(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(2)
  • 二级参考文献(4)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(4)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
人脸识别
核典型相关分析
特征向量选择
支持向量数据描述
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
相关基金
甘肃省自然科学基金
英文译名:Natural Science Foundation of Gansu Province
官方网址:http://www.nwnu.edu.cn/kjc/glbf/gsshzrkxjjzxglbf.htm
项目类型:
学科类型:
论文1v1指导