基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前贝叶斯网络缺乏支持结构建立,参数学习、知识推理的一致算法,使知识建立与应用过程无法联接.针对这一现状,通过设计适合于贝叶斯网络学习的遗传算法编码方式、具有调整策略的交叉与变异算子,能进行推理误差反馈的适应函数,实现样本支持下的结构确定、参数学习、推理检验、反馈修正的贝叶斯网络全过程建立.实验结果表明,新算法不仅同步优化网络结构与参数,且可以自适应推理误差的学习修正,有着更满意的知识推理正确率.
推荐文章
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
多贝叶斯网络分类器集成模型研究
贝叶斯网络
分类器集成模型
结构学习
约束信息熵
免疫遗传算法
基于贝叶斯网络下的遗传算法
概率
贝叶斯理论
遗传算法
基于贝叶斯网络的证据目标模型及推理算法研究
贝叶斯网络
证据目标模型
正向推理
反向推理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的贝叶斯网络模型研究
来源期刊 计算机工程与设计 学科 工学
关键词 贝叶斯网络 结构学习 参数学习 知识推理 遗传算法
年,卷(期) 2009,(11) 所属期刊栏目 人工智能
研究方向 页码范围 2756-2759,2799
页数 5页 分类号 TP181|O212.8
字数 4912字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 廖芹 华南理工大学理学院应用数学系 28 289 9.0 16.0
2 陈望宇 华南理工大学理学院应用数学系 1 16 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (5)
参考文献  (5)
节点文献
引证文献  (16)
同被引文献  (24)
二级引证文献  (12)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
参数学习
知识推理
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导