基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱图像的海量数据给存储和实时传输带来极大困难,必须对其进行有效压缩.提出了一种结合预测误差反馈的高光谱图像无损压缩算法.根据高光谱图像相邻波段相关性强弱进行波段分组,有效降低了波段排序算法的计算量.通过研究波段排序算法的性能,采用最佳后向排序算法对各组进行波段排序.为有效去除高光谱图像相关性,采用JPEG压缩标准中的无损预测模式对各波段进行谱内预测,利用参考波段预测误差对当前波段谱内预测值进行反馈校正,可进一步提高预测精度.最后,利用JPEG-LS标准对参考波段和预测残差进行无损压缩.对AVIRIS型和OMIS-I型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率.
推荐文章
基于波段分组的高光谱图像无损压缩
高光谱图像
无损压缩
波段分组
波段排序
一种基于自适应预测的高光谱图像近无损压缩方法
高光谱图像
近无损压缩
量化
三维自适应预测
干涉多光谱图像无损压缩算法
图像处理
图像压缩
干涉多光谱图像
无损压缩
高光谱图像无损压缩算法的DSP优化实现
高光谱图像
无损压缩
自适应预测
数字信号处理器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合预测误差反馈的高光谱图像无损压缩研究
来源期刊 信号处理 学科 工学
关键词 高光谱图像 无损压缩 波段分组 谱间预测
年,卷(期) 2009,(6) 所属期刊栏目 论文与技术报告
研究方向 页码范围 860-863
页数 4页 分类号 TP751.1
字数 3744字 语种 中文
DOI 10.3969/j.issn.1003-0530.2009.06.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万建伟 国防科技大学电子科学与工程学院 136 1396 20.0 30.0
2 粘永健 国防科技大学电子科学与工程学院 18 201 8.0 14.0
3 靳成英 国防科技大学电子科学与工程学院 2 23 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (33)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(6)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
高光谱图像
无损压缩
波段分组
谱间预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
武器装备预研基金
英文译名:
官方网址:
项目类型:武器装备预研基金重点基金项目和武器装备预研基金一般基金项目
学科类型:
论文1v1指导