作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
谱聚类算法利用特征向量构造简化的数据空间,在降低数据维数的同时,使得数据在子空间中的分布结构更加明显。该文提出了一种粗糙谱聚类算法,并将其应用于文本数据挖掘。实验表明,该算法与现有的文本聚类算法相比,准确率有一定的提高。
推荐文章
基于文本挖掘的聚类算法研究
文本挖掘
K-means
K-medoids
准确率
召回率
基于文本挖掘的聚类算法研究
文本挖掘
K-means
K-medoids
准确率
召回率
基于图划分的谱聚类算法在文本挖掘中应用
谱聚类
邻接矩阵
文本挖掘
正则割
Laplancian矩阵
蚁群算法在文本聚类中的应用研究
文本聚类
移动策略
观察半径
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粗糙谱聚类在文本挖掘中的应用
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 粗糙集 谱聚类 文本聚类
年,卷(期) 2009,(3) 所属期刊栏目
研究方向 页码范围 1557-1558
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑吉 同济大学计算机科学与技术系 4 30 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粗糙集
谱聚类
文本聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导