基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BP(Back-propagation neural network)神经网络是目前应用最为广泛和成功的多层前馈神经网络之一,分析了BP算法的基本原理,指出了BP算法具有收敛速度慢、易陷入局部极小点等缺陷以及这些缺陷产生的根源,并针对这些缺陷,通过在标准BP算法中引入变步长法、加动量项法等几种方法来优化BP算法。仿真实验结果表明,这些方法有效地提高了BP算法的收敛速度,避免陷入局部最小点。同时.将改进得BP神经网络算法应用于脱机手写体汉字识别系统的实现。使系统较好地回避了汉字结构复杂、变形难以预测等问题,提高了识剐率。
推荐文章
BP神经网络的改进及其应用
人工神经网络
BP神经网络
需水量
预测
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
基于模拟退火算法改进的 BP神经网络算法
BP神经网络
样本选择
主动学习
模拟退火
BP 神经网络的改进
BP神经网络
收敛速度
初始权重
局部最小
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP神经网络的改进算法及其应用
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 BP神经网络 改进BP算法 脱机手写体汉字识别 学习率
年,卷(期) 2009,(7) 所属期刊栏目
研究方向 页码范围 5256-5258
页数 3页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴文全 海军工程大学电子工程学院 61 318 10.0 15.0
2 余华 海军工程大学电子工程学院 23 86 6.0 8.0
3 曹亮 海军工程大学电子工程学院 4 39 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (1)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
改进BP算法
脱机手写体汉字识别
学习率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导