基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前临床病例异常检测的研究主要采用病症关联、费用控制和临床序列模式挖掘等方法,对无症状信息、无完整临床行为时间等临床数据仍具有一定的局限性.根据这一类临床数据特点,提出了基于模式识别的CC-FR模型,该模型采用频繁模式挖掘的方法确定单病种隶属函数,通过隶属函数中的频繁模式与待检测临床病例相匹配得到检测结果.实验结果表明,该模型可以有效的检测临床病例异常性,在临床医疗中起到监督和警示的作用.
推荐文章
基于时间序列模式表示的异常检测算法
斜率
时间序列
模式表示
支持数
异常值
异常证据及其检测算法研究
DS证据理论
异常证据
检测
冲突
基于流分解的异常检测算法
网络异常
时间序列分析
流分解
基于模式识别技术的高光谱遥感图像检测
模式识别
高光谱图像
遥感图像检测
图像预处理
图像拼接
过热区域确定
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模式识别临床病例异常检测算法研究
来源期刊 计算机工程与设计 学科 工学
关键词 异常检测 模式识别 频繁模式挖掘 FP增长 隶属函数
年,卷(期) 2009,(24) 所属期刊栏目 人工智能
研究方向 页码范围 5705-5707,5711
页数 4页 分类号 TP311
字数 3877字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鹤标 江苏大学计算机科学与通信工程学院 78 637 13.0 22.0
2 田青华 江苏大学计算机科学与通信工程学院 2 21 1.0 2.0
3 郑甜 江苏大学计算机科学与通信工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (134)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常检测
模式识别
频繁模式挖掘
FP增长
隶属函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导