原文服务方: 现代电子技术       
摘要:
小波变换将样本图像分解为低频分量和高频分量,去除其高频分量,用低频分量来做人脸识别能有效削弱光照的影响;核方法可以将非线性可分的低维样本空间变换为线性可分的高维空间;人脸与虹膜融合包含更多有用的鉴别信息.因此,先用离散小波变换(DWT)分别获取人脸与虹膜的低频分量;然后,核Fisher辨别分析(KFDA)提取人脸与虹膜融合后的KFDA特征;最后,采用最小距离分类器(KNN)完成识别.基于ORL人脸数据库与CASIA虹膜数据库的实验结果表明,该方法实现了人脸与虹膜的特征融合识别,有效地提高了识别率,克服了Fisher算法的"小样本"效应,为多生物特征身份识别提供了一种新途径.
推荐文章
基于小波分解和分类的人脸识别
人脸识别
人脸分类
聚类分析
相关系数
小波
基于局部小波变换与DCT的人脸识别算法
人脸识别
小波变换
离散余弦变换
基于Adaboost的人脸与虹膜融合识别
多模态生物识别
人脸与虹膜特征融合
特征描述算子
融合2DPCA和贝叶斯的人脸识别算法
人脸识别
2DPCA
小波变换
贝叶斯方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波分析与KFisher的人脸与虹膜融合和识别
来源期刊 现代电子技术 学科
关键词 人脸识别 虹膜识别 离散小波变换 核Fisher辨别分析 特征融合
年,卷(期) 2009,(22) 所属期刊栏目 图象分析
研究方向 页码范围 96-98,101
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1004-373X.2009.22.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 甘俊英 五邑大学信息学院 82 871 14.0 26.0
2 柳俊峰 五邑大学信息学院 1 4 1.0 1.0
3 邵盼 五邑大学信息学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (6)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (18)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(5)
  • 引证文献(1)
  • 二级引证文献(4)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(5)
  • 引证文献(1)
  • 二级引证文献(4)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
虹膜识别
离散小波变换
核Fisher辨别分析
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导