基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
发现高维观测数据空间的低维流形结构,是流形学习的主要目标.在前人利用神经网络进行非线性降维的基础上,提出一种新的连续自编码(Continuous Autoencoder,C-Autoencoder)网络,该方法特别采用CRBM(Continuous Restricted Bohzmann Ma-chine)的网络结构,通过训练具有多个中间层的双向深层神经网络可将高维连续数据转换成低维嵌套并继而重构高维连续数据.特别地,这种连续自编码网络可以提供高维连续数据空间和低维嵌套结构的双向映射,不仅有效解决了大多数非线性降维方法所不具备的逆向映射问题,而且特别适用于高维连续数据的降维和重构.将C-Antoencoder用于人工连续数据的实验表明,C-Au-toencoder不仅能发现嵌入在高维连续数据中的非线性流形结构,也能有效地从低维嵌套中恢复原始高维连续数据.
推荐文章
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
基于动态序列图像的流形学习研究
视频序列
流形学习
自编码网络
降维
重构
基于流形学习的社会化媒体网络数据分类
流形学习
拉普拉斯特征映射
社会化媒体
网络数据分类
多标签
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 新的连续自编码网络流形学习研究
来源期刊 计算机工程与应用 学科 工学
关键词 连续自编码网络(C-Autoencoder) 高维数据 降维 重构
年,卷(期) 2009,(30) 所属期刊栏目 数据库、信号与信息处理
研究方向 页码范围 154-156,223
页数 4页 分类号 TP391
字数 2986字 语种 中文
DOI 10.3778/j.issn.1002-8331.2009.30.047
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
连续自编码网络(C-Autoencoder)
高维数据
降维
重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导