基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法的决策结果与结点的排部密切相关,而其结点的排部却是主观的,影响了诊断的正确率.本文提出一种根据故障数据的空间分布来优化结点排部的方法,它能够提高支持向量机诊断的正确率.采用该方法扩展的多分类支持向量机在变压器故障诊断中获得良好效果.
推荐文章
支持向量机在TE过程故障诊断中的应用
支持向量机
故障诊断
TE过程
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
深度支持向量机在齿轮故障诊断中的应用
故障诊断
变分模态分解
峭度
深度支持向量机
齿轮箱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用
来源期刊 自动化学报 学科
关键词 支持向量机 故障诊断 多分类 决策导向无环图 结点优化
年,卷(期) 2010,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 427-432
页数 6页 分类号
字数 语种 中文
DOI 10.3724/SP.J.1004.2010.00427
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜斌 164 1102 17.0 25.0
2 宋晓峰 45 295 8.0 16.0
3 易辉 4 11 2.0 3.0
4 王定成 4 116 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (1807)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
故障诊断
多分类
决策导向无环图
结点优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导