基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络(Pulse coupled neural networks,PCNN)的图像归一化转动惯量(Normalized moment of inertia,NMI)特征提取及检索算法.首先利用改进简化PCNN模型相似神经元同步时空特性及指数哀降机制将图像分解为具有相关性的二值系列图像,然后提取反映原始图像目标形状、结构分布二值系列图像的一维NMI特征矢量信号,并将其应用在图像检索中;同时,考虑到二值系列图像间的相关性及不同图像间NMI序列值的差异性,引入了马氏距离结合Pearson积矩相关法的综合相似性度量方法.实验结果表明,所提算法对图像特征矢量序列具有良好抗几何畸变不变特性及对图像表述的唯一性,且具有较好的图像检索效果.
推荐文章
基于脉冲耦合神经网络提取图像边缘的新方法
脉冲耦合神经网络
二值图像
灰度图像
边缘提取
基于生物机制脉冲神经网络的特征提取
快速小波变换
脉冲神经元网络
图像压缩
特征提取
基于改进型脉冲耦合神经网络的图像分割方法
脉冲耦合神经网络
图像分割
图像熵
阈值
基于改进型脉冲耦合神经网络的图像增强
区域面积
脉冲耦合神经网络
边缘提取
噪声
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于脉冲耦合神经网络的图像NMI特征提取及检索方法
来源期刊 自动化学报 学科
关键词 图像处理 图像检索 脉冲耦合神经网络 二值序列图像 归一化转动惯量特征矢量 综合相似性度量
年,卷(期) 2010,(7) 所属期刊栏目
研究方向 页码范围 931-938
页数 8页 分类号
字数 语种 中文
DOI 10.3724/SP.J.1004.2010.00931
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (78)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(3)
  • 参考文献(1)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(8)
  • 参考文献(1)
  • 二级参考文献(7)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(10)
  • 参考文献(1)
  • 二级参考文献(9)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(6)
  • 参考文献(6)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
图像检索
脉冲耦合神经网络
二值序列图像
归一化转动惯量特征矢量
综合相似性度量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
高等学校博士学科点专项科研基金
英文译名:
官方网址:http://std.nankai.edu.cn/kyjh-bsd/1.htm
项目类型:面上课题
学科类型:
论文1v1指导