基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决图像检索中的聚类问题,提出一种改进的图像纹理聚类算法.在纹理特征提取阶段,采用双树复小波对图像进行分解,然后对每个高频段提取直方图签名作为纹理特征;在聚类阶段,根据数据分布的密度来动态地计算数据点的邻接矩阵,再采用保局映射进行降维,对降维后的数据进行k-means聚类.通过采用直方图签名的方式能有效地表示图像纹理在各个方向上特征信息,同时根据数据密度构建的邻接矩阵,能够和保局映射一起更有效地发掘数据之间的局部相关性.实验表明:相对于传统方法,该算法具有更高的聚类正确性.
推荐文章
基于两种纹理特征聚类的图像检索
基于内容的图像检索
分形维数[1]
索引
聚类
基于关联规则的映射聚类算法
高维
映射聚类
关联规则
子空间
多尺度纹理图像数据抗干扰信息映射方法研究
多尺度纹理图像数据
抗干扰
信息
映射
基于核的自组织映射聚类
聚类算法
自组织映射
特征空间
核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于保局映射的图像纹理聚类
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 双树复小波 保局映射 纹理签名 降维
年,卷(期) 2010,(9) 所属期刊栏目
研究方向 页码范围 1654-1658
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2010.09.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双树复小波
保局映射
纹理签名
降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导