基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用模糊C均值算法解决文本聚类问题时,随机选取的初始聚类中心和聚类数会导致不同的聚类结果,且容易陷入局部最优.提出利用粒子群优化算法确定模糊c均值的初始聚类中心,并通过向量空间模型和特征提取,再利用模糊C均值进行文档聚类.实验表明,这种基于粒子群的模糊C均值聚类算法迭代次数少,能解决经典模糊C均值算法对初始值敏感和易陷入局部极小的缺点,且聚类速度和效果得到明显提高.
推荐文章
改进的粒子群优化模糊C均值聚类算法
模糊C均值聚类
粒子群优化
聚类有效性
基于免疫粒子群优化的模糊C均值聚类算法
粒子群优化算法
模糊聚类
模糊C均值算法
免疫系统
对当基
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群的模糊C均值文本聚类算法研究
来源期刊 图书情报工作 学科 工学
关键词 模糊C均值 粒子群 文本聚类
年,卷(期) 2010,(6) 所属期刊栏目 情报研究
研究方向 页码范围 57-60,65
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高劲松 华中师范大学信息管理系 32 64 5.0 6.0
2 张俊丽 南京大学信息管理系 7 94 3.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (135)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (2)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
模糊C均值
粒子群
文本聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
图书情报工作
半月刊
0252-3116
11-1541/G2
16开
北京中关村北四环西路33号
2-412
1980
chi
出版文献量(篇)
11437
总下载数(次)
32
总被引数(次)
130230
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导