原文服务方: 中国机械工程       
摘要:
针对轴向柱塞泵故障特征的模糊性和不完备性特点,提出一种多特征信息融合与贝叶斯网络相结合的故障诊断方法.该方法从柱塞泵采集的振动信号中提取出频域和幅域的多个故障特征,并将这些特征当作来自多个不同传感器的多源信息.利用贝叶斯参数估计算法进行多特征信息融合.通过构造贝叶斯网络并建立贝叶斯分类器来简化融合后的结果,通过最大后验概率估计值的计算进行故障识别.经过轴向柱塞泵多故障模式的诊断实验,验证了该方法能够有效地实现柱塞泵柱塞松靴和脱靴故障的诊断.
推荐文章
基于分布式贝叶斯网络的多故障诊断方法研究
贝叶斯网络
分布式推理
多故障诊断
复杂系统
基于贝叶斯网络模型的电子装备故障诊断研究
电子装备
故障诊断
贝叶斯网络
不确定性
贝叶斯网络在起重机故障诊断中的应用研究
起重机
贝叶斯网络
故障诊断
一种基于FMEA的故障诊断贝叶斯网络快速构建方法
贝叶斯网络
FMEA
故障诊断
前轮转弯系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多特征信息融合的贝叶斯网络故障诊断方法研究
来源期刊 中国机械工程 学科
关键词 柱塞泵 故障诊断 多特征信息融合 贝叶斯网络
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 940-945,967
页数 7页 分类号 TP206.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜万录 138 1777 24.0 35.0
2 刘思远 23 129 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (166)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(9)
  • 参考文献(1)
  • 二级参考文献(8)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
柱塞泵
故障诊断
多特征信息融合
贝叶斯网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导