作者:
原文服务方: 微电子学与计算机       
摘要:
基本粒子滤波算法已被成功用于训练神经网络,但该算法在建议分布的选择上并没有考虑当前时刻观测值的影响,针对该问题提出在神经网络训练中,使用迭代扩展卡尔曼滤波器来生成建议分布.由于迭代扩展卡尔曼滤波器在传递近似建议分布的均值和协方差的过程中,充分利用了观测值信息,从而可以更好地描述神经网络权值的后验概率分布.实验结果表明,在训练神经网络时,迭代扩展卡尔曼滤波器作为建议分布的粒子滤波算法训练性能明显优于基本粒子滤波算法及扩展卡尔曼粒子滤波算法(EKPF).
推荐文章
联邦式扩展卡尔曼粒子滤波算法
信息融合
联邦滤波
粒子滤波
非高斯
非线性
基于扩展卡尔曼滤波器的RBF神经网络学习算法
扩展卡尔曼滤波器
径向基函数
神经网络
带有次优渐消因子的扩展卡尔曼滤波器
基于改进扩展卡尔曼粒子滤波的目标跟踪算法
目标跟踪
粒子滤波
扩展卡尔曼滤波
马尔可夫链蒙特卡罗方法
非线性系统
基于扩展卡尔曼粒子滤波算法的神经网络训练
多层感知器
神经网络训练
扩展卡尔曼粒子滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络训练中的迭代扩展卡尔曼粒子滤波算法
来源期刊 微电子学与计算机 学科
关键词 神经网络训练 迭代扩展卡尔曼滤波 迭代扩展卡尔曼粒子滤波
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 103-107
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张应博 大连理工大学城市学院 6 38 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (51)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (0)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络训练
迭代扩展卡尔曼滤波
迭代扩展卡尔曼粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导