作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
小样本问题和对局部变化(如遮挡、表情、光照等)识别的不鲁棒性是线性判别分析(LDA)在处理人脸图像时所常面临的问题.针对LDA的这些不足,提出了一种基于LDA的半随机子空间方法(SemiRS-LDA).与传统的基于整个人脸样本特征集采样的随机子空间方法不同的是,SemiRS-LDA将随机采样建立在人脸图像的子图像上.该方法首先将人脸图像集划分成若干个子图像集,然后将随机子空间方法应用于每个子图像集上并构建多个LDA分类器,最后使用投票方法将各分类器进行组合.在两个标准人脸数据库(AR、ORL)上进行了实验,结果表明了所提方法不仅能获得较高的识别性能,而且对图像的光线、遮挡等也具有较强的鲁棒性.
推荐文章
改进随机子空间LDA结合多补丁集成学习的鲁棒人脸识别算法
人脸识别
鲁棒评估
描述符算法
补丁集成
改进随机子空间
基于LDA算法的人脸识别方法的比较研究
线性判别分析(LDA)
人脸识别
Eigenfaces
Fisherfaces
小样本问题
基于SVD和LDA的人脸识别方法
人脸识别
奇异值分解
线性鉴别分析
反向传播神经网络
基于2D-PCA和2D-LDA的人脸识别方法
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 半随机子空间的LDA人脸识别方法
来源期刊 计算机工程与应用 学科 工学
关键词 线性判别分析(LDA) 人脸识别 半随机子空间 小样本问题
年,卷(期) 2010,(20) 所属期刊栏目
研究方向 页码范围 197-201
页数 分类号 TP391.4
字数 5560字 语种 中文
DOI 10.3778/j.issn.1002-8331.2010.20.054
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱玉莲 南京航空航天大学信息科学与技术学院 13 76 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (5)
二级引证文献  (5)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
线性判别分析(LDA)
人脸识别
半随机子空间
小样本问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导