基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用贝叶斯网络表示领域知识,提出一种基于领域知识的频繁项集和频繁属性集的兴趣度计算和剪枝方法BN-EJTR,其目的在于发现与当前领域知识不一致的知识,以解决频繁模式挖掘所面临的有趣性和冗余问题.针对兴趣度计算过程中批量推理的需求,BN-EJTR提供了一种基于扩展邻接树消元的贝叶斯网络推理算法,用于计算大量项集在贝叶斯网络中的支持度;同时,BN-EJTR提供了一种基于兴趣度阈值和拓扑有趣性的剪枝算法.实验结果表明,与同类方法相比,方法BN-EJTR具有良好的时间性能,而且剪枝效果明显;分析发现,经过剪枝后的频繁属性集和频繁项集相对于领域知识符合有趣性要求.
推荐文章
基于仿真的贝叶斯网络推理
贝叶斯网络
近似推理
随机仿真
逻辑采样
基于贝叶斯网络的健壮社团检测
复杂网络
健壮社团
贝叶斯网络
基于重要度的分级贝叶斯网络诊断模型研究
故障诊断
贝叶斯网络
后验分布
层次分析法
基于贝叶斯网络模型的信息检索
贝叶斯网络模型
信息检索
关联规则发现
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯网络的频繁模式兴趣度计算及剪枝
来源期刊 软件学报 学科 工学
关键词 频繁模式 贝叶斯网络 邻接树 兴趣度 剪枝
年,卷(期) 2011,(12) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 2934-2950
页数 分类号 TP181
字数 16542字 语种 中文
DOI 10.3724/SP.J.1001.2011.03978
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡学钢 合肥工业大学计算机与信息学院 314 3156 27.0 39.0
2 姚宏亮 合肥工业大学计算机与信息学院 95 488 11.0 16.0
3 胡春玲 合肥工业大学计算机与信息学院 7 55 4.0 7.0
7 吴信东 合肥工业大学计算机与信息学院 7 78 3.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (60)
参考文献  (12)
节点文献
引证文献  (13)
同被引文献  (15)
二级引证文献  (57)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(5)
  • 引证文献(3)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(7)
  • 引证文献(3)
  • 二级引证文献(4)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(18)
  • 引证文献(1)
  • 二级引证文献(17)
2019(24)
  • 引证文献(1)
  • 二级引证文献(23)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
频繁模式
贝叶斯网络
邻接树
兴趣度
剪枝
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导