基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决非高斯信号较难描述这一难点问题,提出一种基于马尔科夫链蒙特卡罗方法的混合α稳定分布参数的贝叶斯推理方法.构建了混合稳定分布分层的贝叶斯图模型,利用Gibbs抽样实现了混合权值和分配参数z的估计,基于Metropolis算法完成了每个分布元中4个参数的估计.仿真结果表明,该方法能够准确地估计出混合α稳定分布中的各个参数,具有很好的鲁棒性和灵活性,可用于对非高斯信号或数据进行建模.
推荐文章
基于贝叶斯推理的乘员约束系统参数识别
贝叶斯方法
参数识别
约束系统
MCMC
代理模型
基于 MCMC 算法的贝叶斯面板单位根检验?
面板数据
贝叶斯方法
分位数
单位根
仿真
基于MCMC算法的多元线性回归变点模型的贝叶斯估计
多元线性回归
MCMC算法
满条件分布
贝叶斯估计
基于仿真的贝叶斯网络推理
贝叶斯网络
近似推理
随机仿真
逻辑采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MCMC的混合α稳定分布参数贝叶斯推理
来源期刊 西安理工大学学报 学科 工学
关键词 混合α稳定分布 马尔可夫链蒙特卡罗 Metropolis算法 Gibbs抽样 非高斯信号
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 385-391
页数 7页 分类号 TP391.4
字数 6479字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘丁 西安理工大学自动化与信息工程学院 196 3213 31.0 45.0
2 陈亚军 西安理工大学自动化与信息工程学院 22 199 7.0 13.0
3 梁军利 西安理工大学自动化与信息工程学院 9 37 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (10)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (11)
二级引证文献  (13)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(5)
  • 引证文献(4)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
混合α稳定分布
马尔可夫链蒙特卡罗
Metropolis算法
Gibbs抽样
非高斯信号
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安理工大学学报
季刊
1006-4710
61-1294/N
大16开
西安市金花南路5号
1978
chi
出版文献量(篇)
2223
总下载数(次)
6
总被引数(次)
21166
论文1v1指导