基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的贝叶斯网络结构学习算法都需要对高维数据项集进行大量地计算,极大地影响了算法的可靠性、健壮性以及精确度,同时高维计算也耗费了大量时间,为了解决这个问题,提出基于特征选择技术贪婪贝叶斯网络结构学习算法。理论分析表明,本算法在效率上优于现有算法,实验结果也表明,对于高维相对小采样数据集,本算法在精度上也优于大多数算法。
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高维小采样数据集的贝叶斯网络结构学习算法
来源期刊 齐齐哈尔大学学报:自然科学版 学科 工学
关键词 贝叶斯网络 相关性 冗余性 启发式方法
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 56-60
页数 5页 分类号 TP319
字数 3478字 语种 中文
DOI 10.3969/j.issn.1007-984X.2012.04.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李春生 东北石油大学电气信息学院 56 125 6.0 8.0
2 蔡贶 东北石油大学电气信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (5)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
相关性
冗余性
启发式方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
齐齐哈尔大学学报(自然科学版)
双月刊
1007-984X
23-1419/N
大16开
齐齐哈尔市文化大街42号
14-103
1979
chi
出版文献量(篇)
3573
总下载数(次)
8
总被引数(次)
8631
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导