基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于蚁群算法的聚类新算法.按分类的样本数N和类别数p,设计N+1层城市,除第1层城市外,其余城市均有p个城市.蚂蚁每次从第1层城市开始到最后一层城市的移动,就完成对所有样本的分类.访问城市的选择受路径信息素和样品类信息素的共同作用,每次完成层间城市的访问,需要对路径信息素更新;完成一次循环,分别对路径信息素和样本类信息素更新.通过实例分析,该算法能够得到较为满意的结果.
推荐文章
基于蚁群算法的模糊C均值聚类
FCM
蚁群算法
模糊聚类算法
一种新的基于蚁群和凝聚的混合聚类算法
聚类算法
蚁群聚类
凝聚聚类
基于图聚类与蚁群算法的社交网络聚类算法
社交网络
数据挖掘
聚类处理
人工蚁群优化
图聚类
信任信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群算法的聚类新算法
来源期刊 计算机与应用化学 学科 化学
关键词 蚁群算法 聚类分析 信息素
年,卷(期) 2012,(5) 所属期刊栏目
研究方向 页码范围 604-606
页数 分类号 TQ015.9|TP391.9|O6-39
字数 2180字 语种 中文
DOI 10.3969/j.issn.1001-4160.2012.05.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (972)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (3)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(13)
  • 参考文献(1)
  • 二级参考文献(12)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(9)
  • 参考文献(1)
  • 二级参考文献(8)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
蚁群算法
聚类分析
信息素
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导