基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在线目标跟踪是计算机视觉领域的一个具有挑战性的问题.提出了一种基于特征分组的在线目标跟踪算法.首先,利用像素点在多帧的方差对模板库中的目标模板进行特征分组.然后,利用主要特征图像和次要特征图像学习投影矩阵P,对样本进行投影.最后,利用最小误差法得出当前帧的跟踪结果.与其他典型算法相比,该算法对目标的异常变化具有很强的鲁棒性.
推荐文章
在线特征选择的目标跟踪
在线学习
最优颜色特征
均值向量平移
卡尔曼滤波
结合特征点匹配的在线目标跟踪算法
TLD
目标跟踪
显著性
特征点匹配
聚类
基于HOG及在线多实例学习的目标跟踪算法
HOG
分类器
在线多实例学习
目标跟踪
基于主动特征选择的在线加权多实例目标跟踪
费舍尔信息
主动特征选择
权重多实例学习
加权和模型
“漂移”现象
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征分组的在线目标跟踪算法
来源期刊 大连理工大学学报 学科 工学
关键词 在线目标跟踪 线性子空间学习 特征分组 模板更新
年,卷(期) 2013,(5) 所属期刊栏目 电子与信息工程、管理工程
研究方向 页码范围 755-759
页数 5页 分类号 TP391
字数 3116字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王洪玉 大连理工大学信息与通信工程学院 49 470 11.0 19.0
2 姜明新 大连理工大学信息与通信工程学院 7 92 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (16)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (2)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
在线目标跟踪
线性子空间学习
特征分组
模板更新
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连理工大学学报
双月刊
1000-8608
21-1117/N
大16开
大连市理工大学出版社内
8-82
1950
chi
出版文献量(篇)
3166
总下载数(次)
3
总被引数(次)
39997
论文1v1指导