原文服务方: 华侨大学学报(自然科学版)       
摘要:
针对支持向量机(SVM)计算复杂度高、参数不容易确定等局限性,提出一种基于相关向量机(RVM)的赖氨酸反应过程关键参量的软测量方法.根据过程经验,确定发酵液的溶解氧浓度、pH值、二氧化碳释放率、氧吸收率和葡萄糖流加速率为辅助变量,利用相关支持向量机的拟合与泛化能力,建立了赖氨酸反应过程基质浓度、菌体浓度、产物浓度等不可直接测量参量的软测量模型.基于L-赖氨酸反应过程开展的试验研究表明:所建立的相关向量机软测量模型拟合精度高、泛化能力强,较好地满足了赖氨酸反应过程的控制要求.
推荐文章
基于PSO-SVM逆的赖氨酸发酵过程软测量
粒子群算法
支持向量机
逆扩展模型
L-赖氨酸发酵
基于动态多核相关向量机的软测量建模研究
软测量
污水处理
多核
相关向量机
时差建模
基于支持向量机的软测量建模方法
支持向量机
发酵
软测量
神经网络
部分最小二乘
基于深度集成支持向量机的工业过程软测量方法
支持向量机
软测量
深度置信网络
集成学习
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相关向量机的赖氨酸反应过程参数软测量
来源期刊 华侨大学学报(自然科学版) 学科
关键词 L-赖氨酸 相关向量机 软测量 贝叶斯方法
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 22-25
页数 4页 分类号 TQ922.3|TQ018
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王博 江苏大学电气信息工程学院 38 215 9.0 13.0
2 黄丽 江苏大学电气信息工程学院 17 142 7.0 11.0
3 嵇小辅 江苏大学电气信息工程学院 41 524 13.0 22.0
4 张孟尧 江苏大学电气信息工程学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (21)
参考文献  (2)
节点文献
引证文献  (7)
同被引文献  (10)
二级引证文献  (7)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
L-赖氨酸
相关向量机
软测量
贝叶斯方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
论文1v1指导