基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于图像底层特征的泡沫图像分类识别正确率不高、存在语义鸿沟问题,提出一种基于向量空间模型(VSM)的浮选泡沫图像分类方法.该方法借鉴文本分类方法,对工业摄像机获取的大量泡沫图像通过分块、底层特征提取和聚类,构造泡沫状态词汇表;在此基础上,经词汇相似度和词频计算,用词袋向量描述泡沫图像;最后,采用VSM实现实时泡沫图像的有监督分类识别.用某金属浮选过程工业现场泡沫图像数据对该方法进行了实验验证,实验结果表明,该方法的工况识别平均准确率近90%,明显优于基于底层特征的分类方法,并在一定程度上解决了语义鸿沟问题,具有很好的应用价值.
推荐文章
基于图像空间结构统计分布的浮选泡沫状态识别
矿物浮选
过程系统
成像
图像统计建模
测量
Weibull分布
工况分类
一种新的浮选泡沫图像识别方法
浮选
泡沫图像
机器视觉
正交保局投影
支持向量机
基于LBPV的浮选泡沫图像纹理特征提取
浮选泡沫图像
纹理
局部二进制模式方差
浮选工况
聚类分析
基于向量空间模型的多主题Web文本分类方法
向量空间模型
文本分类
多主题
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于向量空间模型的浮选泡沫图像分类方法研究
来源期刊 高技术通讯 学科
关键词 泡沫图像 分类识别 向量空间模型(VSM) 泡沫状态词汇 纹理
年,卷(期) 2013,(9) 所属期刊栏目 先进制造与自动化技术
研究方向 页码范围 973-979
页数 7页 分类号
字数 5610字 语种 中文
DOI 10.3772/j.issn.1002-0470.2013.09.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
2 谢永芳 中南大学信息科学与工程学院 101 578 12.0 18.0
3 王雅琳 中南大学信息科学与工程学院 84 519 11.0 17.0
4 张润钦 中南大学信息科学与工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (45)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (3)
二级引证文献  (2)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
泡沫图像
分类识别
向量空间模型(VSM)
泡沫状态词汇
纹理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高技术通讯
月刊
1002-0470
11-2770/N
大16开
北京市三里河路54号
82-516
1991
chi
出版文献量(篇)
5099
总下载数(次)
14
总被引数(次)
39217
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导