基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
小波变换在信号处理中有着广泛的应用,能同时分析时域和频域方面的信息,但是传统的小波变换依赖于傅立叶变换,有大量的卷积运算,运算速度较慢.该文讨论了第二代小波变换的原理,并采用它来处理脑电信号.提升算法作为构造第二代小波的关键技术,通过预测确定高频信息,更新后得到正确的低频信息,它不依赖于傅立叶变换,大大提高了运算速度.通过分析提升算法的基本原理,用第二代小波变换实现了对脑电信号的节律(δ、θ、α、β)提取,并得到了令人满意的效果.
推荐文章
基于小波变换的动态脑电节律提取
小波变换
非平稳信号
动态脑电
节律提取
基于小波包变换的癫痫脑电棘波检测
癫痫棘波检测
小波包变换
信号重构
漏检率
误检率
基于脑电样本熵和小波熵的麻醉深度监测
麻醉深度
脑电
样本熵
小波熵
基于IMF能量矩的脑电情绪特征提取研究
小波变换
经验模态分解
本征模态函数
能量矩
脑电信号
情感识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波提升算法的脑电节律提取
来源期刊 南京信息工程大学学报 学科 工学
关键词 第二代小波变换 脑电信号 提升算法 节律提取
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 60-63
页数 4页 分类号 TN911.72
字数 2362字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阮经文 51 458 10.0 20.0
2 郑日荣 广东工业大学自动化学院 24 80 5.0 8.0
3 刘攀 广东工业大学自动化学院 5 6 1.0 2.0
4 何敏 广东工业大学自动化学院 5 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (21)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (19)
二级引证文献  (7)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(2)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
第二代小波变换
脑电信号
提升算法
节律提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京信息工程大学学报
双月刊
1674-7070
32-1801/N
南京市宁六路219号
chi
出版文献量(篇)
1162
总下载数(次)
7
总被引数(次)
4849
论文1v1指导