基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper addresses the constrained mean-semivariance portfolio optimization problem with the support of a novel multi-objective evolutionary algorithm (n-MOEA). The use of semivariance as the risk quantification measure and the real world constraints imposed to the model make the problem difficult to be solved with exact methods. Thanks to the exploratory mechanism, n-MOEA concentrates the search effort where is needed more and provides a well formed efficient frontier with the solutions spread across the whole frontier. We also provide evidence for the robustness of the produced non-dominated solutions by carrying out, out-of-sample testing during both bull and bear market conditions on FTSE-100.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Constrained Mean-Semivariance Portfolio Optimization Problem with the Support of a Novel Multiobjective Evolutionary Algorithm
来源期刊 软件工程与应用(英文) 学科 医学
关键词 MULTIOBJECTIVE OPTIMIZATION EVOLUTIONARY ALGORITHMS PORTFOLIO OPTIMIZATION
年,卷(期) rjgcyyyyw_2013,(7) 所属期刊栏目
研究方向 页码范围 22-29
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTIOBJECTIVE
OPTIMIZATION
EVOLUTIONARY
ALGORITHMS
PORTFOLIO
OPTIMIZATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用(英文)
月刊
1945-3116
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
885
总下载数(次)
0
论文1v1指导