基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了一类广义中心对称结构的有限元模型修正的数学理论和方法.首先将模型修正问题处理为约束矩阵的最佳逼近问题,给出最佳逼近解的表达式.重点讨论了逼近解的扰动理论,并对稀疏结构的模型给出了保结构的算法.数值例子表明该方法是行之有效的.
推荐文章
广义中心对称矩阵的结构与性质
中心对称矩阵
广义中心对称矩阵
自反矩阵
Pn-对称矩阵
线性流形上广义反次对称矩阵的最佳逼近
线性流形
广义反次对称矩阵
最佳逼近
谱约束下反埃尔米特广义哈密尔顿矩阵最佳逼近解的扰动分析
反埃尔米特广义哈密尔顿矩阵
逼近解
扰动分析
一类矩阵方程的反对称正交反对称解及其最佳逼近
矩阵方程
反对称正交反对称矩阵
矩阵范数
最佳逼近
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 谱约束下广义中心对称矩阵的最佳逼近解及扰动分析
来源期刊 北京交通大学学报 学科 数学
关键词 广义中心对称矩阵 矩阵范数 特征对 最佳矩阵逼近解 扰动理论
年,卷(期) 2013,(6) 所属期刊栏目
研究方向 页码范围 139-142
页数 4页 分类号 O241.5
字数 2441字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢冬秀 北京信息科技大学理学院 32 52 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广义中心对称矩阵
矩阵范数
特征对
最佳矩阵逼近解
扰动理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京交通大学学报
双月刊
1673-0291
11-5258/U
大16开
北京西直门外上园村3号
1975
chi
出版文献量(篇)
3626
总下载数(次)
7
总被引数(次)
38401
论文1v1指导