原文服务方: 计算机应用研究       
摘要:
针对实际人脸图像含有的噪声模型常常表现出的非高斯特性,该非高斯特性具有较厚重的拖尾现象,提出一种基于多元混合高斯分布的多分类人脸识别方法.该方法将多元混合高斯分布、核函数、概率密度函数估计中的参数估计以及贝叶斯理论结合起来,能对含有重尾噪声的人脸图像有较高的识别率.用ORL标准人脸库进行验证,实验结果表明了可行性.
推荐文章
基于多分类投影极速学习机的快速人脸识别方法
极速学习机
人脸识别
Gabor小波
支持向量机
基于稀疏表征多分类器融合的遮挡人脸识别
人脸识别
稀疏表征
多分辨率分块
多分类器融合
过完备字典
基于多分类器组合的红外目标识别方法
红外探测
模式识别
多分类器组合
BP神经网络
决策融合
基于分类概率保持的最大间距准则人脸识别方法
分类概率保持
最大间距准则
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多元混合高斯分布的多分类人脸识别方法
来源期刊 计算机应用研究 学科
关键词 重尾噪声 多元混合高斯分布 参数估计 核函数 贝叶斯理论
年,卷(期) 2013,(9) 所属期刊栏目 图形图像技术
研究方向 页码范围 2868-2871
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2013.09.079
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学数字媒体学院 528 3424 23.0 37.0
2 袁少锋 江南大学数字媒体学院 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (8)
参考文献  (7)
节点文献
引证文献  (12)
同被引文献  (29)
二级引证文献  (8)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
重尾噪声
多元混合高斯分布
参数估计
核函数
贝叶斯理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导