基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承振动信号的故障特征难以提取的问题,提出了一种基于经验模态分解(Empirical Mode Decomposition,EMD)和增强功率谱的分析方法.首先通过EMD分解方法将非线性、非平稳的轴承故障振动信号分解成若干个本征模态函数(Intrinsic Mode Function,IMF)分量,然后对包含轴承故障特征信息的本征模态函数分量做增强功率谱分析.仿真分析结果和实验结果表明,增强功率谱分析能够增强IMF分量中与轴承故障有关的周期脉冲信号成分,同时减弱随机噪声信号成分,消除干扰频率,得到故障信号清晰明显的频域调幅特征,从而实现滚动轴承故障的准确诊断.
推荐文章
基于EMD与功率谱分析的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解方法(EMD)
功率谱
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于小波包和EMD处理的滚动轴承故障诊断
小波分解
经验模式分解
固有内在模函数
轴承故障诊断
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD和增强功率谱分析的滚动轴承故障诊断方法
来源期刊 现代制造工程 学科 工学
关键词 经验模态分解 本征模态函数 增强功率谱 滚动轴承 故障诊断
年,卷(期) 2013,(12) 所属期刊栏目 设备设计/诊断维修/再制造
研究方向 页码范围 116-120
页数 5页 分类号 TH113.1|TN911.7
字数 2810字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈彦龙 军械工程学院七系 29 173 8.0 12.0
2 张培林 军械工程学院七系 253 1973 21.0 28.0
3 吴定海 军械工程学院七系 52 328 9.0 15.0
4 杨望灿 军械工程学院七系 12 81 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (118)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (14)
二级引证文献  (11)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(9)
  • 引证文献(4)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
经验模态分解
本征模态函数
增强功率谱
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代制造工程
月刊
1671-3133
11-4659/TH
大16开
北京市西城区核桃园西街36号301A
2-431
1978
chi
出版文献量(篇)
9080
总下载数(次)
14
总被引数(次)
50123
论文1v1指导