作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本论文在对各种算法深入分析的基础上,尤其在对基于密度的聚类算法he基于层次的聚类算法深入研究的基础上,提出了一种全新的基于密度和层次的快速聚类算法.该算法保持了基于密度聚类算法发现任意形状簇的优点,而且具有近似线性的时间复杂性,因此该算法适合对大规模数据的挖掘.理论分析和实验结果也证明了基于密度和层次的聚类算法具有处理任意形状簇的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的DBSCAN算法.
推荐文章
基于数据挖掘的聚类算法研究
聚类
数据挖掘
支持向量聚类
数据挖掘中的聚类算法综述
数据挖掘
聚类
聚类算法
在数据流数据库中集成聚类算法研究与实现
数据流数据库
Esper系统
时间窗口
Clustream算法
基于绕质心聚类算法的大数据挖掘
大数据
分裂聚类
凝聚聚类
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度和层次的快速聚类算法在数据挖掘中的设计及实现
来源期刊 信息安全与技术 学科
关键词 密度 层次 聚类 数据挖掘
年,卷(期) 2013,(8) 所属期刊栏目 计算机
研究方向 页码范围 59-61
页数 3页 分类号
字数 1420字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张艳 7 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (37)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
密度
层次
聚类
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全
月刊
1674-9456
10-1421/TP
16开
北京市海淀区紫竹院路66号赛迪大厦18层
82-938
2010
chi
出版文献量(篇)
3296
总下载数(次)
16
总被引数(次)
10074
论文1v1指导