作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善粒子群多目标优化算法的分布性,引入了聚集密度以进行精英集的更新。其基本思想为:计算群体中每个个体的聚集密度,根据目标函数值和聚集密度定义一个偏序集,采用比例选择原则依次从偏序集中选择个体,更新精英集。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明:新算法的收敛性与常规粒子群多目标优化算法相当,但分布性有了明显的提高。
推荐文章
基于粒子群算法的钻进参数多目标优化
钻进参数
多目标优化
机械钻速
粒子群
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
自组织多目标粒子群优化算法
多目标粒子群优化
自组织映射
种群分布
精英学习策略
一种避免种群聚集的多目标粒子群优化算法
粒子群优化算法
变异操作
更新
仿真实验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚集密度的粒子群多目标优化算法
来源期刊 计算机工程与应用 学科 工学
关键词 多目标优化 粒子群优化算法 聚集密度 分布性
年,卷(期) 2013,(17) 所属期刊栏目
研究方向 页码范围 190-194
页数 5页 分类号 TP301.6
字数 3690字 语种 中文
DOI 10.3778/j.issn.1002-8331.1208-0042
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许峰 安徽理工大学理学院 143 328 9.0 12.0
2 杨虎 安徽理工大学计算机科学与工程学院 2 17 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (62)
参考文献  (4)
节点文献
引证文献  (13)
同被引文献  (30)
二级引证文献  (8)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标优化
粒子群优化算法
聚集密度
分布性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导