基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前常用的各种滚动轴承故障诊断信号处理方法缺乏自适应性,过完备原子分解则具有灵活的自适应能力.将余弦包(CP)及小波包(WP)的快速算法应用于匹配追踪算法设计了CPWP混合原子分解算法,对滚动轴承故障仿真信号进行CP、WP以及CPWP原子分解并比较三种分解结果,得出CPWP混合原子分解可以更加清晰全面地反映冲击调幅信号的特征,分辨率高于单一原子库分解.将上述三种方法分别应用于滚动轴承外圈故障实测信号分析,进一步验证了对信号不同特征敏感的异类原子库的结合可提高对信号的自适应识别能力,CPWP混合原子分解得到较CP、WP原子分解更多的冲击调制信息,能够有效提取滚动轴承的故障特征.
推荐文章
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于混合域特征集与加权KNN的滚动轴承故障诊断
混合域特征集
加权K-近邻分类器
滚动轴承
故障诊断
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
固有模式分量
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CPWP混合原子分解的滚动轴承故障诊断方法研究
来源期刊 振动与冲击 学科 工学
关键词 过完备原子分解 自适应分解 CPWP混合原子库 滚动轴承 故障诊断
年,卷(期) 2013,(23) 所属期刊栏目
研究方向 页码范围 48-51,195
页数 5页 分类号 TH212|TH213.3
字数 3077字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘树林 上海大学机电工程与自动化学院 54 297 9.0 14.0
2 姜锐红 上海大学机电工程与自动化学院 7 58 3.0 7.0
3 唐友福 上海大学机电工程与自动化学院 23 69 3.0 7.0
7 刘颖慧 上海大学机电工程与自动化学院 9 70 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
过完备原子分解
自适应分解
CPWP混合原子库
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动与冲击
半月刊
1000-3835
31-1316/TU
大16开
上海市华山路1954号上海交通大学
4-349
1982
chi
出版文献量(篇)
12841
总下载数(次)
12
相关基金
高等学校博士学科点专项科研基金
英文译名:
官方网址:http://std.nankai.edu.cn/kyjh-bsd/1.htm
项目类型:面上课题
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导