基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大多数视觉注意模型都采用简单加权线性融合的方式获取显著图,提出了一个更符合生物学机制的基于贝叶斯推理的多线索视觉注意模型,模拟视觉系统腹侧通路与背侧通路中的视觉注意过程,采用贝叶斯推理的方式集成自顶向下与自底向上的信息,同时还集成了多种视觉线索,包括形状、颜色和上下文等.利用该模型进行遥感影像中的目标检测与定位的结果表明,该模型能有效的检测出目标并给出目标所在的位置.
推荐文章
基于贝叶斯推理的决策树模型
决策树
贝叶斯推理
逆跳马尔科夫链蒙特卡洛
分类准确率
递归分割
基于仿真的贝叶斯网络推理
贝叶斯网络
近似推理
随机仿真
逻辑采样
基于视觉双通路与贝叶斯模型的烟雾检测方法
疑似烟雾区域
视觉双通路
贝叶斯概率融合
基于贝叶斯网络的证据目标模型及推理算法研究
贝叶斯网络
证据目标模型
正向推理
反向推理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯推理的多线索视觉注意模型
来源期刊 计算机工程与设计 学科 工学
关键词 视觉注意 视觉线索 贝叶斯推理 显著图 目标检测
年,卷(期) 2013,(7) 所属期刊栏目 多媒体技术
研究方向 页码范围 2470-2475
页数 6页 分类号 TP391.41
字数 5394字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 方涛 上海交通大学自动化系系统控制与信息处理教育部重点实验室 79 1195 20.0 30.0
2 霍宏 上海交通大学自动化系系统控制与信息处理教育部重点实验室 43 473 12.0 20.0
3 朱辰阳 上海交通大学自动化系系统控制与信息处理教育部重点实验室 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (7)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (3)
二级引证文献  (5)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
视觉注意
视觉线索
贝叶斯推理
显著图
目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导