基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对稀疏贝叶斯压缩感知算法存在复杂度高、收敛速度慢等缺陷,提出了一种快速变分稀疏贝叶斯学习的频谱检测与定位算法。该算法在原始问题求解过程中增加了辅助变量,消除了原问题模型中未知变量之间耦合度高的问题。并依据稀疏参数的收敛情况,自适应删除不收敛稀疏参数对应的基函数,从而进一步加快了算法的收敛速度。实验结果表明:该算法在收敛速度和频谱检测精度上有显著的改善。
推荐文章
基于变分稀疏贝叶斯学习的频谱检测方法
认知无线电
频谱检测
变分稀疏贝叶斯学习
基于变分稀疏贝叶斯学习的DOA估计
DOA估计
贝叶斯学习
变分贝叶斯学习
稀疏表示
相关向量机
MATLAB仿真
估计精度
收敛速度
基于贝叶斯预测密度的弱匹配追踪频谱检测
宽带频谱感知
贝叶斯预测密度
稀疏度
弱匹配追踪
模式耦合快速求逆稀疏贝叶斯M IM O雷达成像
MIMO雷达成像
模式耦合
块稀疏
快速求逆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于快速变分稀疏贝叶斯学习的频谱感知与定位
来源期刊 中南民族大学学报(自然科学版) 学科 工学
关键词 认知无线电 频谱感知 变分稀疏贝叶斯学习 压缩采样
年,卷(期) 2014,(1) 所属期刊栏目 物理与电子信息科学
研究方向 页码范围 62-66
页数 5页 分类号 TN911.76
字数 4703字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱翠涛 中南民族大学电子信息工程学院 71 225 8.0 11.0
2 刘绪杰 中南民族大学电子信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (17)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
认知无线电
频谱感知
变分稀疏贝叶斯学习
压缩采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南民族大学学报(自然科学版)
季刊
1672-4321
42-1705/N
大16开
武汉市民院路5号
1982
chi
出版文献量(篇)
2596
总下载数(次)
4
总被引数(次)
11010
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导