基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
There are many proposed policy-improving systems of Reinforcement Learning (RL) agents which are effective in quickly adapting to environmental change by using many statistical methods, such as mixture model of Bayesian Networks, Mixture Probability and Clustering Distribution, etc. However such methods give rise to the increase of the computational complexity. For another method, the adaptation performance to more complex environments such as multi-layer environments is required. In this study, we used profit-sharing method for the agent to learn its policy, and added a mixture probability into the RL system to recognize changes in the environment and appropriately improve the agent’s policy to adjust to the changing environment. We also introduced a clustering that enables a smaller, suitable selection in order to reduce the computational complexity and simultaneously maintain the system’s performance. The results of experiments presented that the agent successfully learned the policy and efficiently adjusted to the changing in multi-layer environment. Finally, the computational complexity and the decline in effectiveness of the policy improvement were controlled by using our proposed system.
推荐文章
Agent及Multi-Agent System的理论和应用
多Agent系统
Agent
人工智能
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
一种适用的Multi-Agent System协同框架及其应用
MAS(Multi-Agent System)
协同机制
GPGP
TAEMS
制造执行系统
基于MAS(Multi-Agent System)的多机器人系统:协作多机器人学发展的一个重要方向
多机器人系统
多智能体系统(MAS)
协作多机器人学
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Reinforcement Learning System to Dynamic Movement and Multi-Layer Environments
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 REINFORCEMENT Learning PROFIT-SHARING Method MIXTURE PROBABILITY CLUSTERING
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 176-185
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
REINFORCEMENT
Learning
PROFIT-SHARING
Method
MIXTURE
PROBABILITY
CLUSTERING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导