作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高遥感图像的识别率,提出一种基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)和证据理论(Dempster-Shafer theory,D-S)的遥感图像分类方法.该方法首先分别提取遥感图像的纹理和颜色特征,然后分别对纹理和颜色特征采用LSSVM建立分类模型,并得到相应特征的分类率,最后把单一特征分类正确率输入到D-S证据理论对它们进行融合,从而得到它们的权值,并根据权值得到遥感图像的最终分类结果.仿真结果表明,该方法不仅提高了遥感图像的分类率,而且还加快了遥感图像分类的速度,从而使得该方法在地理信息系统具有一定的应用价值.
推荐文章
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
基于D-S证据理论的信息融合图像识别
信息融合
图像识别
纹理特征提取
灰度共生矩阵
灰度-梯度共生矩阵
D-S证据理论
信度函数
基于改进GoogLeNet的遥感图像分类方法
遥感图像
卷积神经网络
GoogLeNet
迁移学习
基于迁移学习和D-S理论的网络异常检测
迁移学习
D-S理论
异常行为分析
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSSVM和D-S的遥感图像分类方法
来源期刊 华中师范大学学报(自然科学版) 学科 工学
关键词 最小二乘支持向量机 证据理论 遥感图像
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 29-32
页数 4页 分类号 TN911.73
字数 2897字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (180)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (10)
二级引证文献  (4)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(10)
  • 参考文献(1)
  • 二级参考文献(9)
2006(8)
  • 参考文献(3)
  • 二级参考文献(5)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
最小二乘支持向量机
证据理论
遥感图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中师范大学学报(自然科学版)
双月刊
1000-1190
42-1178/N
大16开
武汉市武昌桂子山
38-39
1955
chi
出版文献量(篇)
3391
总下载数(次)
5
总被引数(次)
18993
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导