基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 探讨应用支持向量机递归特征约减算法(support vector machine with recursive feature elimination algorithm,SVM-RFE)进行痢疾疫情预测的可行性.方法 收集辽宁省葫芦岛市2004-2011年的逐月痢疾疫情资料和相应时段的气象资料,首先利用描述统计分析痢疾季节性发病规律,使用Spearman等级相关分析疫情同气象因素的关系;使用标准化气象指标作为自变量,随机将2/3数据用于训练,1/3数据用于检验,设置交叉验证次数为100次,根据径向基核函数的SVM-RFE确定最优候选变量子集并据此进行预测,利用R2.90完成上述统计过程.结果 SVM-RFE在17项气象指标中按重要程度由高至低排序,居前5位分别为平均气温、平均最高气温、降水距平百分率、平均风速、平均最低气温.随着自变量的增加,训练集的决定系数R2由0.702增加到0.945,检验集在取前两个自变量时决定系数最大,R2为0.653,均高于传统对数线性模型.结论 SVM可较好地模拟痢疾疫情在时间序列上的变动趋势,RFE算法在筛选变量方面有较好的应用前景.
推荐文章
基于支持向量机的需水预测研究
统计学习理论
支持向量机
回归模型
需水预测
基于多特征信息的支持向量机数据关联算法
数据关联
支持向量机
信息融合
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机递归特征约减算法的痢疾疫情预测研究
来源期刊 中国卫生统计 学科
关键词 支持向量机 递归特征约减算法 预测 痢疾 发病率
年,卷(期) 2014,(1) 所属期刊栏目 论著
研究方向 页码范围 6-9
页数 4页 分类号
字数 2902字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何苗 中国医科大学附属第一医院信息中心 78 739 15.0 24.0
2 黄德生 中国医科大学基础医学院数学教研室 65 452 13.0 18.0
3 关鹏 中国医科大学公共卫生学院流行病学教研室 81 596 15.0 21.0
4 曹爽 中国医科大学公共卫生学院流行病学教研室 13 49 3.0 6.0
5 王双 7 3 1.0 1.0
6 沈铁峰 9 29 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (5)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
递归特征约减算法
预测
痢疾
发病率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国卫生统计
双月刊
1002-3674
21-1153/R
大16开
沈阳市和平区北二马路92号
8-39
1984
chi
出版文献量(篇)
6078
总下载数(次)
19
总被引数(次)
51365
论文1v1指导