基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标跟踪是计算机视觉领域中具有挑战性的问题.提出了一种基于稀疏表示的判别式目标跟踪算法,用于在复杂场景中对运动目标进行鲁棒跟踪.该算法首先对目标进行滑动窗口稠密采样,构建目标的稀疏表示字典,然后将目标表示为该字典的稀疏编码,从而构造具有判别力的目标特征表示.在跟踪过程中,将目标跟踪问题看作是背景与目标的判别性问题,使用目标和背景的特征表示在线训练朴素贝叶斯分类器,根据分类结果得到目标的跟踪结果.为了适应场景及目标外观变化,设计动态更新机制对字典与分类器进行在线更新.和传统基于稀疏表示的跟踪方法相比,该算法将稀疏表示与判别式分类器结合,利用稀疏表示获得具有判别力的目标特征表示,而在线的朴素贝叶斯分类器则确保了目标跟踪的快速有效.与流行的多种跟踪算法比较结果表明,本算法能够在复杂条件下实现目标的鲁棒跟踪.
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
一种基于属性分割的产生式/判别式混合分类器
分类
产生式
判别式
属性分割
遗传算法
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
基于稀疏表示和特征选择的LK目标跟踪
视觉跟踪
稀疏表示
LK图像配准算法
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于稀疏表示的判别式目标跟踪算法
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 目标跟踪 稀疏表示 贝叶斯分类器
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 477-483
页数 7页 分类号 TP391.4
字数 4569字 语种 中文
DOI 10.6043/j.issn.0438-0479.2014.04.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李翠华 厦门大学信息科学与技术学院 78 1178 20.0 30.0
2 洪景新 厦门大学信息科学与技术学院 20 168 7.0 12.0
3 戴平阳 厦门大学信息科学与技术学院 8 188 6.0 8.0
4 詹小静 厦门大学信息科学与技术学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
稀疏表示
贝叶斯分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
福建省自然科学基金
英文译名:Natural Science Foundation of Fujian Province of China
官方网址:http://www.fjinfo.gov.cn/fz/zrjj.htm
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导