基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
引入动态变异操作来优化粒子群算法,同时将改进的粒子群优化算法和误差反向传播的算法相结合,构成混合算法,用于训练人工神经网络,并将该混合算法应用于变压器的故障诊断.仿真结果表明,该算法具有较快的收敛速度和较高的计算精度;诊断结果表明,该算法有利于提高变压器故障诊断的正确率.
推荐文章
基于BP神经网络的电力变压器故障诊断
电力变压器
神经网络
三比值法
故障
诊断
基于ACS⁃SA文化基因算法的BP神经网络变压器故障诊断
BP神经网络
文化基因算法
变压器
故障诊断
BP神经网络在变压器故障诊断中的应用
变压器
气体分析
BP神经网络
基于SOFM神经网络的变压器故障诊断研究
SOFM神经网络
故障诊断
改进的罗杰斯三比值法
变压器
泛化能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO-BP神经网络的变压器故障诊断
来源期刊 上海电力学院学报 学科 工学
关键词 粒子群优化算法 误差反向传播 动态变异 变压器故障诊断
年,卷(期) 2014,(3) 所属期刊栏目 电力工程
研究方向 页码范围 243-247
页数 5页 分类号 TM41|TM407|TP183
字数 3139字 语种 中文
DOI 10.3969/j.issn.1006-4729.2014.03.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张浩 上海电力学院自动化工程学院 124 1305 20.0 28.0
2 彭道刚 上海电力学院自动化工程学院 157 1369 20.0 28.0
3 张国祥 上海电力学院自动化工程学院 1 7 1.0 1.0
4 袁丹 14 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (125)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (30)
二级引证文献  (9)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
粒子群优化算法
误差反向传播
动态变异
变压器故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电力大学学报
双月刊
2096-8299
31-2175/TM
大16开
上海市平凉路2103号
1980
chi
出版文献量(篇)
2781
总下载数(次)
10
论文1v1指导