在外界扰动为有界不可测条件下,利用径向基函数(radial basis function ,RBF)神经网络在线逼近全向智能轮椅的非线性逆运动学模型,提出对轮椅轨迹跟踪的直接自适应控制方法。首先,在分析全向智能轮椅平台动力学模型的基础上,设计了基于径向基函数神经网络的全向智能轮椅自适应控制器;并进一步利用李雅普诺夫稳定性理论,证明了在外界扰动及神经网络权值误差逼近有界的条件下,该控制器在全向智能轮椅轨迹控制中跟踪误差的一致稳定且有界;最后,通过全向智能轮椅轨迹跟踪仿真实验,验证了所提出控制方法的有效性和稳定性。