基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出对基于MOD和K-SVD字典学习算法的图像去噪的两个方面的改进。在字典更新阶段,采用一种新的字典更新方式,在保持支集完备的同时寻找字典和表示法。在稀疏编码阶段,根据前一次追踪过程产生的部分系数进行修正和更新。分别对这两种改进进行了验证,并说明了如何进行更快速的训练以及取得更好的结果,实验结果证实了论文方法的有效性。
推荐文章
基于字典学习和原子聚类的图像去噪算法
字典学习
稀疏表示
冗余字典
K-均值聚类
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
结合分块噪声估计的字典学习图像去噪算法
图像去噪
平滑图像块
奇异值分解
噪声估计
字典学习
一种非零元个数约束的字典学习图像去噪算法
图像去噪
字典学习
稀疏表示
K-SVD
非零元个数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的字典学习算法的图像去噪方法
来源期刊 计算机与数字工程 学科 工学
关键词 稀疏表示 字典学习 MOD K-SVD 图像去噪
年,卷(期) 2014,(6) 所属期刊栏目 图像处理
研究方向 页码范围 1071-1074
页数 4页 分类号 TP391
字数 3603字 语种 中文
DOI 10.3969/j.issn1672-9722.2014.06.037
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢勤岚 中南民族大学生物医学工程学院 66 655 13.0 23.0
2 丁晶晶 中南民族大学生物医学工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示
字典学习
MOD
K-SVD
图像去噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导